A q-SAMPLING THEOREM AND PRODUCT FORMULA FOR CONTINUOUS q-JACOBI FUNCTIONS

نویسنده

  • FETHI BOUZEFFOUR
چکیده

In this paper we derive a q-analogue of the sampling theorem for Jacobi functions. We also establish a product formula for the nonterminating version of the q-Jacobi polynomials. The proof uses recent results in the theory of q-orthogonal polynomials and basic hypergeometric functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration and Special Functions

1.1 q -binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.2 Unimodality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 1.3 Congruences for the partition function . . . . . . . . . . . . . . . . . . . . . . . . . 143 1.4 The Jacobi triple product identity . . . . . . . . . . . . . . . . . ...

متن کامل

The Parents of Jacobi's Four Squares Theorem Are Unique

Jacobi’s four squares theorem asserts that the number of representations of a positive integer n as a sum of four squares is 8 times the sum of the positive divisors of n, which are not multiples of 4. A formula expressing an infinite product as an infinite sum is called a product-to-sum identity. The product-to-sum identities in a single complex variable q from which Jacobi’s four squares form...

متن کامل

Non-classical orthogonality relations for big and little q-Jacobi polynomials

Big q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0 are classically defined for 0 < a < q −1, 0 < b < q−1 and c < 0. For the family of little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, classical considerations restrict the parameters imposing 0 < a < q−1 and b < q−1. In this work we extend both families in such a way that wider sets of parameters are allowed, and we establish orthogonality conditio...

متن کامل

Signature quantization, representations of compact Lie groups, and a q-analogue of the Kostant partition function

We discuss some applications of signature quantization to the representation theory of compact Lie groups. In particular, we prove signature analogues of the Kostant formula for weight multiplicities and the Steinberg formula for tensor product multiplicities. Using symmetric functions, we also find, for type A, analogues of the Weyl branching rule and the Gelfand-Tsetlin theorem. These analogu...

متن کامل

A NEW FOUR PARAMETER q−SERIES IDENTITY AND ITS PARTITION IMPLICATIONS

We prove a new four parameter q-hypergeometric series identity from which the three parameter identity for the Göllnitz theorem due to Alladi, Andrews, and Gordon follows as a special case by setting one of the parameters equal to 0. The new identity is equivalent to a four parameter partition theorem which extends the deep theorem of Göllnitz and thereby settles a problem raised by Andrews thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007